Affiliation:
1. Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095, USA
Abstract
We review the role of zero-temperature entropy in several closely-related contexts in QCD. The first is entropy associated with disordered condensates, including [Formula: see text]. The second is effective vacuum entropy arising from QCD solitons such as center vortices, yielding confinement and chiral symmetry breaking. The third is entanglement entropy, which is entropy associated with a pure state, such as the QCD vacuum, when the state is partially unobserved and unknown. Typically, entanglement entropy of an unobserved three-volume scales not with the volume but with the area of its bounding surface. The fourth manifestation of entropy in QCD is the configurational entropy of light-particle world-lines and flux tubes; we argue that this entropy is critical for understanding how confinement produces chiral symmetry breakdown, as manifested by a dynamically-massive quark, a massless pion, and a [Formula: see text] condensate.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献