Spherical-shell accretion onto the black hole–torus system

Author:

Donmez Orhan1

Affiliation:

1. Physics Department, Nigde University, Nigde, 51200, Turkey

Abstract

The general relativistic hydrodynamical simulation of the spherical-shell accretion onto the stable torus around non-rotating and rotating black holes isotropically falling from a finite distance are constructed for the first time. This type of accretion might be used to explain the dynamics of the torus. The accreted matter sonically, supersonically or highly supersonically interacts with a torus and forms a newly developed dynamical structure. This spherical-shell changes the angular momentum of the torus and mediates torus instabilities which cause the termination of the torus. The impact of the rest-mass density of the perturbation is also studied which found that the high density perturbation destroys the torus in a few dynamical times. It is also found that the dumping time of the matter is much larger for the torus around a rotating black hole. On the other hand, the Papaloizou–Pringle instability from the spherical-shell accretion appears to be much more softer than the former perturbations which are called the Bondi–Hoyle accretion and accretion of the bulk of gas. The Papaloizou–Pringle instability is damped in a short time scale immediately after their formation.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3