Affiliation:
1. Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University, Lanzhou 730000, China
Abstract
In this paper, we study the shadow of a 4D Einstein–Gauss–Bonnet black hole as photons couple to the Weyl tensor and find that the propagation of light depends on its polarization which leads to the existence of a double shadow. Then, we discuss the effect of the coupling parameter [Formula: see text], the polarization of light and the Gauss–Bonnet coupling constant [Formula: see text] on the shadow. Further, we explore the influence of the Gauss–Bonnet coupling constant [Formula: see text] on the quasinormal modes (QNMs) of massless scalar field and investigate the connection between the real part of QNMs in the eikonal limit and the shadow radius of black holes. We find that in the eikonal limit, the real part of QNMs is inversely proportional to the shadow radius under the case of the photons uncoupled to the Weyl tensor.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献