A new parametric class of solutions of a charged anisotropic compact star via Bardeen exterior geometry

Author:

Gedela Satyanarayana12,Pant Neeraj2,Upreti Jaya1,Pant R. P.3

Affiliation:

1. Department of Mathematics, SSJ Campus, Kumaun University, Almora 263601, India

2. Department of Mathematics, National Defence Academy, Khadakwasla, Pune 411023, India

3. Graphic Era Hill University, Bhimtal Campus, Sattal Road, Bhimtal 263132, India

Abstract

In this paper, we provide a new parametric class of solutions to Einstein–Maxwell field equations to study the relativistic structure of a compact star via embedding class I condition. The interior of the star is delineated by Karmarkar condition and at the boundary of the star, we match the class of solutions with Bardeen and Reissner–Nordstrom exterior spacetimes. We assume one of the metric potentials as [Formula: see text] to obtain other metric potential. Subsequently, we solve Maxwell field equations. We verify and compare all the thermodynamic properties like matter density, anisotropy, radial and tangential pressures, compactification factor, energy conditions, and stability conditions, namely, adiabatic index, balancing forces via modified TOV equations, Harrision–Zeldovich criteria, casualty condition, Herrera cracking condition, etc., of our class of charged solutions. All the physical and stability conditions are with the viable trend throughout the interior of the stellar object. For a suitable range of values of [Formula: see text] and parameters, it is depicted from this study that the present class of charged solutions yields effective results to obtain realistic and viable modeling of the neutron star in EXO 1785-248 in both the Bardeen and Reissner–Nordstrom exterior spacetimes.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3