Hidden messenger from quantum geometry: Towards information conservation in quantum gravity

Author:

Guo Xiao-Kan12,Cai Qing-Yu13

Affiliation:

1. Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China

2. University of Chinese Academy of Sciences, Beijing 100049, P. R. China

3. Department of Physics, Florida International University, 11200 SW 8th Street, CP 204 Miami, FL 33199, USA

Abstract

The back reactions of Hawking radiation allow nontrivial correlations between consecutive Hawking quanta, which gives a possible way of resolving the paradox of black hole information loss known as the hidden messenger method. In a recent work of Ma et al. [ arXiv:1711.10704 ], this method is enhanced by a general derivation using small deviations of the states of Hawking quanta off canonical typicality. In this paper, we use this typicality argument to study the effects of generic back reactions on the quantum geometries described by spin network states, and discuss the viability of entropy conservation in loop quantum gravity. We find that such back reactions lead to small area deformations of quantum geometries including those of quantum black holes. This shows that the hidden-messenger method is still viable in loop quantum gravity, which is a first step towards resolving the paradox of black hole information loss in quantum gravity.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,Astronomy and Astrophysics,Nuclear and High Energy Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Resolving the Information Paradox with Probabilistic Spacetime;Journal of High Energy Physics, Gravitation and Cosmology;2023

2. Information Conservation in a Noncommutative Quantum Black Hole Based on Canonical Typicality*;Communications in Theoretical Physics;2019-08-01

3. Trajectories of photons in modified Hayward black hole spacetime;Modern Physics Letters A;2019-07-30

4. Quantum fluctuating CGHS geometries and the information paradox;Classical and Quantum Gravity;2019-02-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3