Using automation and machine learning to maximize tool use in turning centers for better surface finish

Author:

Pandya Akash D.1ORCID,Patel Ajay M.1ORCID,Hindocha Bhavesh R.2ORCID,Kumar Manoj3ORCID,Oza Ankit D.4ORCID,Bhole Kiran S.5ORCID,Kumar Manoj6ORCID,Gupta Manish7ORCID

Affiliation:

1. Department of Mechatronics, G H Patel College of Engineering & Technology, Vallabh Vidyanagar, Gujarat, 388120, India

2. Department of Electrical Engineering, G H Patel College of Engineering & Technology, Vallabh Vidyanagar, Gujarat, 388120, India

3. Department of Mechanical Engineering, ABES Engineering College, Ghaziabad, Uttar Pradesh, 201009, India

4. Department of Computer Sciences and Engineering, Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India

5. Department of Mechanical Engineering, Sardar Patel College of Engineering, Andheri, Mumbai, 400058, India

6. Department of Mechanical Engineering, Chandigarh University, Gharuan, Punjab, 140413, India

7. Division of Research and Development, Lovely Professional University, Phagwara, Punjab, India

Abstract

In modern manufacturing industries, automated machining systems have become a necessity. However, optimizing resource utilization and achieving a good surface finish remain challenging tasks. Excessive tool usage and poor surface finish are common problems encountered in turning centers, which affect productivity and product quality. In this research, we propose an approach that leverages automation and machine learning techniques to maximize tool use and improve surface finish. Our objective is to investigate the relationship between tool life and surface roughness and to develop a method that can optimize cutting parameters for turning centers. We have conducted an experimental study to evaluate the proposed approach, which involves the automatic determination of cutting parameters based on machine learning algorithms, and concluded a cutting speed of 43.10[Formula: see text]m/min, the surface finish achieved for aluminum material was 1.98[Formula: see text][Formula: see text]m. In the case of mild steel material, the surface finish was 12[Formula: see text][Formula: see text]m at a cutting speed of 25.13[Formula: see text]m/min. Similarly, for cast iron material, the surface finish was 8.45[Formula: see text][Formula: see text]m at a cutting speed of 30.16[Formula: see text]m/min. Our results show that the proposed method outperforms the traditional manual method in terms of surface finish, tool usage, and machining time. Our approach can be applied to other machining systems, providing a practical and effective solution to improve the efficiency and quality of machining processes. This paper presents an experiment that explores the relationship between tool life and surface roughness. Furthermore, an automated approach is proposed for eliminating G code in machining, which can improve the efficiency of machine tools and result in a better surface finish. Objective: To maximize tool use and improve surface finish in turning centers by incorporating automation and machine learning. Idea: This research aims to explore the use of automation and machine learning in turning centers to optimize the cutting parameters and achieve a better surface finish. Description of the idea: The study was conducted by performing experiments on three different materials, i.e., aluminum, mild steel, and cast iron. The cutting parameters, including spindle speed, feed, and depth of cut, were controlled by a programmable logic controller (PLC) integrated with a tachometer and Vernier scale. The surface finish was measured using a surface roughness tester, and the data was analyzed using a supervised machine learning algorithm.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3