COMPUTATIONAL MODELING OF ANTIMALARIAL 10-SUBSTITUTED DEOXOARTEMISININS

Author:

CRISTINO MARIA DA GLÓRIA G.1,DE MENESES CARLA CAROLINA F.1,SOEIRO MALÚCIA MARQUES1,FERREIRA JOÃO ELIAS V.1,DE FIGUEIREDO ANTONIO FLORÊNCIO1,BARBOSA JARDEL PINTO1,DE ALMEIDA RUTH C. O.1,PINHEIRO JOSÉ C.1,PINHEIRO ANDRÉIA DE LOURDES R.2

Affiliation:

1. Laboratório de Química Teórica e Computacional, Faculdade de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Belém, PA, CEP: 66075-110, Brazil

2. Departamento de Química e Biologia, Centro de Educação, Ciências Exatas e Naturais, Universidade Estadual do Maranhão, Cidade Universitária Paulo VI, Caixa Postal 09, CEP 65055-900 São Luís, MA, Brazil

Abstract

Nineteen 10-substitued deoxoartemisinin derivatives and artemisinin with activity against D-6 strains of malarial falciparum designated as Sierra Leone are studied. We use molecular electrostatic potential maps in an attempt to identify key structural features of the artemisinins that are necessary for their activities and molecular docking to investigate the interaction with the molecular receptor (heme). Chemometric modeling: Principal Component Analysis (PCA), Hierarchical Cluster Analysis (HCA), K-Nearest Neighbor (KNN), Soft Independent Modeling of Class Analogy (SIMCA) and Stepwise Discriminant Analysis (SDA) are employed to reduce dimensionality and investigate which subset of descriptors are responsible for the classification between more active (MA) and less active (LA) artemisinins. The PCA, HCA, KNN, SIMCA and SDA studies showed that the descriptors LUMO (Lowest Unoccupied Molecular Orbital) energy, DFeO1 (Distance between the O 1 atom from ligand and iron atom from heme), X1A (Average Connectivity Index Chi-1) and Mor15u (Molecular Representation of Structure Based on Electron Diffraction) code of signal 15, unweighted, are responsible for separating the artemisinins according to their degree of antimalarial activity. The prediction study was done with a new set of eight artemisinins by using the chemometric methods and five of them were predicted as active against D-6 strains of falciparum malaria. In order to verify if the key structural features that are necessary for their antimalarial activities were investigated for the interaction with the heme, we also carried out calculations of the molecular electrostatic potential (MEP) and molecular docking. MEP maps and molecular docking were analyzed for more active compounds of the prediction set.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3