Structural properties of short glucagon-like peptide-1 in various solvents investigated by molecular dynamics simulations

Author:

Cao Hong-Yu12,Guo Wei1,Yu Ya-Xian1,Wang Hong-Lei2,Tang Qian12,Li Shen-Min2,Zheng Xue-Fang12

Affiliation:

1. College of Life Science and Biotechnology, Dalian University, Dalian 116622, P. R. China

2. Liaoning Key Laboratory of Bio-Organic Chemistry, Dalian University, Dalian 116622, P. R. China

Abstract

It has been reported that short glucagon-like peptide-1 (sGLP-1), one of glucagon-like peptide 1 (GLP-1) analogues, has the same effect in treating type 2 diabetes mellitus (T2DM) as GLP-1 with increased half-life in human body. Although the high-resolution structure of complex of GLP-1 and its receptor has been achieved, the relationship between the structure of GLP-1 before recognition and its final function is still not clear. As for sGLP-1, few studies attempt to investigate the influences of different conditions on its structure. In present paper, molecular dynamics simulations were applied to explore molecular details of sGLP-1 under various environments. The results demonstrated that in low pH value solvent, the additional helical residue of Pro6 and the flexible N-terminal cannot keep [Formula: see text] helix biological conformation. At pH 3, the structure has undergone significant changes, resulting in the shortest helical length. Further studies showed that protonation states of Glu21 mainly determined the secondary structure of sGLP-1 when pH values increased from 3 to 7. Interestingly, with ions concentration varying from 0.18% to 0.72%, the fluctuating trend of backbone RMSDs is consistent with that of [Formula: see text] helix structure of sGLP-1. The structure of sGLP-1 had less helix content and became more flexible when temperatures increased in the range from 305[Formula: see text]K to 320[Formula: see text]K. Meanwhile, in mixtures of water and 2,2,2-trifluoroethanol (TFE) sGLP-1 showed a rigid structure with an additional helical residue (Pro6) at the N-terminal of original helix content.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3