Spectral and quantum chemical analysis of ethyl 4-[3-(adamantan-1-yl)-4-phenyl-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazole-1-yl]methylpiperazine-1-carboxylate

Author:

Al-Ghulikah Hanan A.1,Meniailava Darya2,Vysotskaya Ulada2,Matsukovich Anna3,El-Emam Ali A.4,Shundalau Maksim25

Affiliation:

1. Department of Chemistry, College of Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia

2. Faculty of Physics, Belarusian State University, 4 Nezaleãnaáci Ave., Minsk 220030, Belarus

3. B. I. Stepanov Institute of Physics, National Academy of Science of Belarus, 68 Nezaleãnaáci Ave., Minsk 220072, Belarus

4. Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansour 35516, Egypt

5. A. N. Sevchenko Institute of Applied Physical, Problems at Belarusian State University, 7 Kurĩataũ Str., Minsk 220108, Belarus

Abstract

The Fourier transform infrared and Raman spectra of the adamantane-based compound ethyl 4-[3-(adamantan-1-yl)-4-phenyl-5-sulfanylidene-4,5-dihydro-1H-1,2,4-triazol-1-yl]methylpiperazine-1-carboxylate were recorded in the ranges of 3200–650[Formula: see text]cm[Formula: see text] and 3200–150[Formula: see text]cm[Formula: see text], respectively. The UV/Vis spectrum of solution of the title compound in ethanol was measured in the range of 450–200[Formula: see text]nm. The DFT calculations at the B3LYP/cc-pVDZ and B3LYP/cc-pVTZ levels of the theory were performed to obtain the equilibrium geometric structure and to predict vibrational IR and Raman spectra of the title molecule. The TDDFT calculations at the CAM-B3LYP/cc-pVTZ level of the theory, as well as MRPT calculations at the CASSCF(4,5)/XMCQDPT2 level of the theory were carried out to reproduce the electronic absorption spectrum. The experimental IR, Raman and UV/Vis spectra were interpreted on the basis of results of quantum chemical modeling. Based on Mulliken and Löwdin atomic population analysis, it was established that the compound under study exhibits features of an intramolecular charge transfer.

Funder

Belarusian Republican Foundation for Fundamental Research

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3