Computational study on the mechanism of transition metal-catalyzed formation of highly substituted furo [3,4-d] [1,2] oxazines

Author:

Gyamfi Abigail Owusuwaa1,Yeboah Martin Amponsah1,Tia Richard1ORCID,Adei Evans1

Affiliation:

1. Computational and Theoretical Chemistry Laboratory, Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Abstract

The mechanism of gold(III)-catalyzed 1,3-dipolar [[Formula: see text]] cycloaddition reactions of 2-(1-alkynyl)-2-alken-1-ones with nitrones to afford highly-substituted furo [3,4-d] [1,2] oxazines, which are useful as structural skeletons in biologically active compounds and as synthetic building blocks in organic synthesis, have been studied computationally. The results show that the reaction proceeds via the formation of a [Formula: see text]-complex in which the gold moiety coordinates to the triple bond of the 2-(1-alkynyl)-2-alken-1-ones, resulting in an intramolecular cyclization of the gold intermediate to generate a carbocation intermediate which is trapped by the nucleophilic oxygen of the nitrone to form a furanyl–gold complex, which upon subsequent cyclization affords the furo [3,4-d] [1,2] oxazine as well as regenerates the gold catalyst. The highest activation barrier in the entire cycle is 19.5[Formula: see text]kcal/mol which accompanies the intramolecular cyclization step. The activation barriers for the reactions of 2-(1-alkynyl)2-alken-1-ones with electron-donating and cyclic substituents are generally lower compared to those of the parent 2-(1-alkynyl)2-alken-1-one while the reactions of 2-(1-alkynyl)2-alken-1-ones with electron-withdrawing substituents have higher activation barriers. Preliminary exploratory calculations on the possibility of replacing gold, an expensive and rare metal, with a copper-based catalyst for the reaction, show that for the key elementary steps, the Cu (III) catalyst is at least as active as the Au (III) complex, thus providing a cheaper route to furo [3,4-d] [1,2] oxazine.

Funder

Teaching and Learning Innovation Fund, Ghana

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3