Affiliation:
1. Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
2. State Key Lab for Structural Chemistry of Stable and Unstable Species, College of Chemistry, Peking University, Beijing, China
Abstract
Theoretical calculations have been carried out to investigate the effect of the 4(R)-substituents ( OH , F , NH 2, and [Formula: see text]) in proline on the stability of the collagen triple helix. A series of substituted proline models were studied first with density functional (B3LYP/6-31+G*) calculations. The solvent effect was studied using the SCIPCM method. While the F , OH and NH 2 groups increase the stability of the trans-up conformation with respect to the trans-down conformation, [Formula: see text] appears to favor the trans-down conformation in an aqueous solution. Second, the triple helices of the tripeptide models, Ac – Pro – Pro(X) – Gly – H with the two proline residues in the down/down and down/up puckering conformations, were optimized with a repeating unit approach using the HF/6-31G* method. For the Ac – Pro – Pro – Gly – H model peptide, the calculated binding energies of the two triple helices with the different puckering modes are similar. All four substituents, F , OH , NH 2, and [Formula: see text], considerably increased the binding energy of the down/up helix, but only [Formula: see text] stabilizes the down/down triple helix. Our calculations indicate that the inter-chain electrostatic interactions involving the 4(R)-substituents play an important role in stabilizing triple helical collagen models and allow the rationalization of all available experimental observations. Further model studies indicate that the substituent effects by the F , OH and NH 2 substituents are local while the effect of [Formula: see text] is long-range in nature.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献