Affiliation:
1. Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
Abstract
In this paper, a series of cationic iridium complexes [(2-phenylpyridine)2(2,2[Formula: see text]-bipyridine)Ir][Formula: see text] which substituted phenyl on different ligands position have been systematically investigated by density functional theory (DFT) method. Significantly, the first hyperpolarizability [Formula: see text] values can be enhanced by introducing phenyl on 2-phenylpyridine ligands R1 or R2, whereas substituting phenyl on 2,2[Formula: see text]-bipyridine ligands R3 result in a decreasing [Formula: see text] values. The [Formula: see text] values exhibit obvious connection with the corresponding HOMO and LUMO energy gap. Furthermore, the time-dependent (TD) DFT calculations suggest that the enhanced [Formula: see text] values are related to obvious charge transfer from 2-phenylpyridine ligands to 2,2[Formula: see text]-bipyridine ligands. The investigation of frequency-dependent first hyperpolarizability [Formula: see text] ([Formula: see text]; [Formula: see text], 0) and [Formula: see text] ([Formula: see text]; [Formula: see text], [Formula: see text]) shown less dispersion effect at the low-frequency region for all of the studied complexes. Overall, tuning phenyl on the different ligands position can be seen as an effective strategy to modulate the second-order nonlinear optical response for these iridium complexes, which is benefit to theoretical and experimental further investigation.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献