Molecular simulation strategies for the discovery of selective inhibitors of β-catenin

Author:

Saranyadevi S.1,Shanthi V.1

Affiliation:

1. Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India

Abstract

Tumor dissemination and relapse in lung cancer were found to be due to the existence of cancer stem cells. In particular, the [Formula: see text]-catenin pathway is found to be one of the crucial pathways in maintaining the stem-like properties of the cells. Thus, targeting the [Formula: see text]-catenin family of proteins is a significant therapeutic route in the treatment of lung cancer. Therefore, in the present study, a pharmacophore-based drug repurposing approach was accomplished to pinpoint potent [Formula: see text]-catenin inhibitors from the DrugBank database. Primarily, ligand-based pharmacophore hypothesis (AAHHR) was generated using existing [Formula: see text]-catenin inhibitors available in the literature and utilized for library screening. Subsequently, the inhibitory activity of the screened compounds was examined by the hierarchical docking process and the Prime MM-GBSA algorithm. Moreover, quantum chemical calculations and molecular dynamics simulations were executed to analyze the inhibitory effects of the screened hit molecule. The results indicate that hit molecule, DB08047 was found to possess better binding free energy, favorable ligand strain energy, satisfactory pharmacokinetic properties and superior free energy landscape profile. Eventually, the pIC[Formula: see text] values of the lead compounds were predicted by the AutoQSAR algorithm. It is noteworthy to mention that DB08047 was found to possess pyrazole scaffolds which could downregulate [Formula: see text]-catenin pathway and thus facilitate the controlled cell growth/inhibit tumor growth.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3