Molecular dynamics simulation of the dissociation mechanism of P-selectin from PSGL-1

Author:

Hassani-Ardekani Hajar12,Niroomand-Oscuii Hanieh1,Nikbin Ehsan3,Shamloo Amir4

Affiliation:

1. Department of Biomechanical Engineering, Sahand University of Technology, Tabriz, Iran

2. Department of Mechanical Engineering, Shiraz Branch, Islamic Azad University, Shiraz, Iran

3. Department of Physics, Sharif University of Technology, Tehran, Iran

4. Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran

Abstract

Interactions between P-selectin, expressed on activated endothelium, and its counterpart P-selectin glycoprotein ligand-1 (PSGL-1), expressed on leukocytes, play a pivotal role in adhesive events that recruit circulating leukocytes toward inflamed or injured tissues. Atomistic understanding of the association and dissociation of these bonds under blood flow is necessary to define the underlying mechanism. In this study, steered molecular dynamics (SMD) simulations were applied to investigate the conformational changes of P-LE/SGP-3 construct (an effective binding unit of the P-selectin/PSGL-1 complex) under stretching with constant velocity. In the present simulations, a self-built force field parameterization was developed for sulfated tyrosine by using force field toolkit of Visual Molecular Dynamics (VMD) program. A dissociation mechanism was represented by analyzing the nonbonded energies between interface residues. The results indicate that the salt bridges between P-LE and SGP-3 and the hydrogen bonds between ion Ca[Formula: see text] and residue fucose of glycan group of PSGL-1 and also between sulfated tyrosine residues are the most effective bonds in binding. Finally, potential of mean force (PMF) was calculated by averaging the outcomes of eight independent runs and the results were discussed.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3