MODELING OF NONLINEAR REACTION–DIFFUSION PROCESSES OF AMPEROMETRIC POLYMER-MODIFIED ELECTRODES

Author:

RAHAMATHUNISSA G.1,RAJENDRAN L.1

Affiliation:

1. SMSV Higher Secondary School, Karaikudi 630 001, Tamilnadu, India

Abstract

A mathematical model of amperometric response for a polymer-modified electrode system has been developed. The model is based on nonstationary diffusion equations containing a nonlinear term related to Michaelis–Menten kinetics of the enzymatic reaction. In particular, the interplay between chemical reaction and substrate diffusion is specifically taken into account. The limiting situations of catalytic site unsaturation and site saturation are considered. The analytical solutions for substrate concentration and transient current for both steady and nonsteady-state are obtained using Danckwerts' relation and variable and separable method. An excellent agreement with the previous analytical results are noted. The combined analytical set of solution of steady-state current in all the nearest sites is also described in a case diagram. A general simple analytical approximate solution for steady-state current for all values of α is also given. A two-point Padé approximation is also derived for the nonsteady-state current for all values of saturation parameter α. Limiting case results (α ≪ 1 and α ≫ 1) are compared with Padé approximation results and are found to be in good agreement.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3