NEW FORMULATION FOR NON-EQUILIBRIUM SOLVATION: SPECTRAL SHIFTS AND CAVITY RADII OF 6-PROPANOYL-2-(N,N-DIMETHYLAMINO) NAPHTHALENE AND 4-(N,N-DIMETHYLAMINO) BENZONITRILE

Author:

HUANG YAO1,LI XIANG-YUAN1,FU KE-XIANG1,ZHU QUAN1

Affiliation:

1. College of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China

Abstract

In the present work, the new formulations describing spectral shifts by the authors have been introduced and employed to investigate two dye molecules, 6-propanoyl-2-(N,N-dimethylamino) naphthalene and 4-(N,N-dimethylamino) benzonitrile. From the viewpoints of the authors, the cavity radii were overestimated owing to the errors existing in the traditional models. Slightly differing from the results by other authors in the past, this work fits the cavity radii to the values of ~4.5 Å for 6-propanoyl-2-(N,N-dimethylamino) naphthalene and ~3.2 Å for 4-(N,N-dimethylamino) benzonitrile. In the fittings, both point dipole approximation and multipole expansion methods are employed. The calculations of the excited states are performed by means of the time-dependent density functional theory. Comparing the fitted cavity radii from the experimental spectra with those estimated from the molecular volumes by some well-known procedures such as COSMO and PCM, we find that the new formulations give fairly satisfactory results. By taking an atomic ion as an example, the authors argue that the Onsager radii recommended by some popular procedures are greatly exaggerated. The cavity radius derived simply from the volume encompassed by the solvent-accessible surface, without any addition of other parts, is suggested for application.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3