Affiliation:
1. Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK73109, USA
Abstract
Alzheimer’s Disease is characterized by the formation of amyloid beta (A[Formula: see text] fibril plaques in the brain. These fibrils can be probed by solid state NMR (ssNMR), which leads to an ensemble of configurations that are compatible with the NMR signals. Typically, only the lowest energy conformer is considered in computer simulations that probe the stability of fibrils and their binding with drug candidates. This restriction could produce data that are not physiologically relevant if the NMR entries differ significantly in stability or binding affinities. In order to study this effect, we have investigated the variance in stability between members of NMR ensembles. Our test cases are a patient-derived A[Formula: see text]-fibril model and two in vitro A[Formula: see text]-fibril models from a previous study we performed on comparative stability. The latter two models allow us also to compare different staggering patterns. We observe significant variations in molecular flexibility, compactness and secondary structure, suggesting that the full NMR ensemble must be considered for a physiologically relevant description of A[Formula: see text] fibrils.
Funder
National Science Foundation
Oklahoma Center for the Advancement of Science and Technology
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献