Calculation of global and local reactivity descriptors of carbodiimides, a DFT study

Author:

Ramirez-Balderrama Kathy1,Orrantia-Borunda Erasmo1,Flores-Holguin Norma1

Affiliation:

1. NANOCOSMOS Virtual Lab, Department of Environment and Energy, Advanced Materials Research Center, Miguel de Cervantes 120, Complejo Industrial Chihuahua. Chihuahua, Chih. 31109, México

Abstract

Carbodiimides have been widely used for different purposes, such as an intermediary to form peptides bonds and esters, which have generated industrial, organic and biological applications. Diisoproylcarbodiimide (DIC), (3-(dimethylamino) propyl)ethylcarbodiimide (EDC) and N,N′-dicyclohexylcarbodiimide (DCC) are the most common carbodiimides, however, there exist other carbodiimides that are not normally used. Twelve carbodiimides including the above mentioned were chosen to study their chemical reactivity as well as their nucleophilic and electrophilic attack sites. Geometry optimization in gas and solution phases was obtained using Density Functional Theory (DFT) through B3LYP with 6-31G(d) and 6-311[Formula: see text]G(d,p) level. Global and local reactivity descriptors were calculated and analyzed such as chemical hardness, ionization potential, electron affinity, Fukui functions, dual descriptor and hypersoftness. The results obtained for geometrical parameters do not have significant differences for gas and solution phase. The introduction of diffuse functions has great impact in electron affinity, modifying notably the values of reactivity descriptors, but didn’t show qualitative differences, since the results found for both basis set calculations show that Cyanamide or CD1 is the most stable and CD11 present greater reactivity of all studied molecules. Also, the hypersoftness results obtained with 6-31G(d) are in agreement with the general affirmation that carbodiimides are easily attacked by nucleophiles and electrophiles in the central carbon–nitrogen double bond.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3