Affiliation:
1. Department of Physics, Bharathiar University, Coimbatore 641 046, India
2. Department of Medical Physics, Bharathiar University, Coimbatore 641 046, India
Abstract
Increasing chain length and end group substitution of polyynes play a crucial role in molecular electronics and nanomaterials. The studies on linear carbon chains are lesser when compared to other carbon allotropes like graphene, fullerenes, nanotube, etc. This prompted us to study the linear carbon chains of different lengths and substitutions. The electronic and optical properties of X–C[Formula: see text]–X ([Formula: see text]–15 and [Formula: see text], NH2, CN, OH) molecules have been studied by using CAM-B3LYP/6-31G* level of theory of DFT methods. Linear carbon chains with odd values of n show lower bond length alternation (BLA) values similar to that of cumulenes and may have metallic property, but the substitution of donor/acceptor molecules does not decrease the BLA significantly. Molecular orbital analysis of linear carbon chains shows that NH2 or NO2 substituted polyynes have helical molecular orbitals for smaller chain lengths which may make a good candidate for molecular wires in molecular devices. As the chain length increases, the helicity decreases and finally disappears. Also, it is seen that for smaller odd values of [Formula: see text] for donor, substituted polyynes have a singlet ground, whereas all the odd [Formula: see text] values of acceptor substitution have triplet ground state.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献