Theoretical investigation of NMR–NQR tensors of hallucinogenic harmine in monomeric and cluster states

Author:

Tahan Arezoo1,Ahmadinejad Neda2

Affiliation:

1. Semnan Branch, Islamic Azad University, Semnan, Iran

2. Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran

Abstract

In the present study, density functional theory was employed to analyze the structure and nuclear magnetic resonance (NMR) — nuclear quadrupole resonance (NQR) spectra of hallucinogenic harmine in monomeric, dimeric, trimeric, and tetrameric states in the gas phase. Furthermore, the effects of hydrogen and resonance interactions on the values of NMR and NQR parameters of nitrogen nuclei in the four states mentioned above were investigated. The computations at the B3LYP/6-311[Formula: see text]G** level of theory indicated that NQR — NMR parameters of nitrogen nuclei varied for each of the four states and were strongly affected by chemical environment, molecular cluster size and molecular interactions. Accordingly, by increasing the participation of lone pair electrons in resonance interactions and aromaticity development, the values of NMR chemical shielding around them increased, whereas their NQR parameters ([Formula: see text] and [Formula: see text] decreased. In contrast, it could be observed that resonance interaction was not the only effective factor influencing changes in values and trends of NMR — NQR parameters by passing from monomeric state to other ones. Moreover, the negative charge on nitrogen atoms and the possibility of hydrogen bond formation were other important factors influencing NMR — NQR parameters.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3