DFT computations on the hydrogen bonding interactions between methacrylic acid-trimethylolpropane trimethacrylate copolymers and letrozole as drug delivery systems

Author:

Kazemi Saeedeh1,Daryani Aliasghar Sarabi2,Abdouss Majid1,Shariatinia Zahra1

Affiliation:

1. Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), P. O. Box: 15875-4413, Tehran, Iran

2. Department of Polymer Engineering & Color Technology, Amirkabir University of Technology (Tehran Polytechnic), P. O. Box: 15875-4413, Tehran, Iran

Abstract

The hydrogen bonding interactions between letrozole (Let) anticancer drug and three copolymers of methacrylic acid-trimethylolpropane trimethacrylate (M1–M3 as molecular imprinted polymers) were studied using density functional theory (DFT) at both B3LYP and B3PW91 levels. The binding energies were corrected for the basis set superposition error (BSSE) and zero-point vibrational energies (ZPVE) so that the most negative [Formula: see text] were measured for compounds 7 and 8 formed between M1 copolymer and endocyclic N1 and N2 atoms of drug, respectively. Also, among complexes 13–15 in which two copolymers were contributed in the formation of O–H[Formula: see text]N bonds with the drug, compound 13 (containing two M1 copolymers) showed the highest [Formula: see text] value. The interactions of all copolymers with drug were exergonic (spontaneous interaction) and exothermic. The QTAIM data supported the covalent character of the C–N, C–H, N–N, C–O, O–H and O–H[Formula: see text]N bonds, the intermediate nature of C[Formula: see text]N and C[Formula: see text]O bonds while the electrostatic character of C–H[Formula: see text]O, HC[Formula: see text]HC and CH[Formula: see text]N interactions. According to the [Formula: see text], [Formula: see text] and [Formula: see text] values, it was suggested that t complexes 7 and 8 (among two particles systems) as well as complex 13 (among three particles systems) can be the most promising drug delivery systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3