Capturing protein folding-relevant topology via absolute contact order variants

Author:

Wagaman Amy S.1,Jaswal Sheila S.2

Affiliation:

1. Mathematics Department, Amherst College, P. O. Box 5000, Amherst, MA 01002, USA

2. Chemistry Department and Program in Biochemistry and Biophysics, Amherst College, P. O. Box 5000, Amherst, MA 01002, USA

Abstract

Absolute contact order is one of the simplest parameters used to predict protein folding rates. Many variants of contact order (CO) have been applied to highlight different aspects of contact neighborhoods and their relationship to folding. However, a systematic study of the influence of CO variants on correlation with folding rate has not been performed for a large combined set of multi- and two-state proteins. We explore different contact neighborhoods and resulting CO by varying the distance thresholds and weighting of sequence separation for heavy atom and residue-based counting methods for a set of 136 proteins diverse across folding and structural classes. We examine the changes in contact neighborhoods and compare correlations with our CO variants and the protein folding rates across our data set as well as by folding type and structural class. Different CO variants lead to the strongest correlations within each protein structural class. Our results demonstrate that backbone topology at a distance beyond where energetic interactions dominate is able to capture folding determinants, and suggest that more sensitive methods of characterizing contact relationships may improve ln kf prediction for diverse protein sets.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3