Comparative study on the oily exudation of aluminized explosives containing EVA and F2603

Author:

Tao Jun1ORCID,Wang Xiaofeng1,Zhang Kun1

Affiliation:

1. Xi’an Modern Chemistry Research Institute, Xi’an 710065, Shaanxi, P. R. China

Abstract

In order to compare the influence of binders on the oily exudation of cyclotrimethylenetrinitramine (RDX) based aluminized explosives, polyvinyl acetate (EVA) and copolymer of vinylidene fluoride and perfluoropropylene (F2603) were selected as binders, which are most commonly used in the press-packed explosives. Herein, the binding energies of wax with the components of RDX-based aluminized explosives containing EVA and F2603 were predicted. Then, the migration models of wax in EVA and F2603 were constructed respectively, and the migration rate of wax in two binders was also calculated. Finally, experimental verification was carried out for wax migration in the two aluminized explosives. The results show that the binding energies of wax with other components of RDX-based composite explosive are all positive, which indicates that the physical compatibility of RDX-based aluminized explosives containing EVA and F2603 is excellent. In addition, wax interacts with the other components of RDX-based explosives mainly via Van der Waals force. However, the binding strength of wax with RDX crystals and binders decreases with the increase of temperature. The type of binders has a great influence on the migration rate of wax, and the oily exudation rate of wax in F2603 is about 4 times than that in EVA both at 298 K and 344 K. Meanwhile, the polymer configuration greatly changes the migration rate of wax. The calculated results are in good agreement with the experimental results.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3