INITIAL ROTATIONAL QUANTUM STATE EXCITATION AND ISOTOPIC EFFECTS FOR THE O(1D)+HCl → OH+Cl (OCl+H) REACTION

Author:

YANG HUAN1,HAN KE-LI1,NANBU SHINKOH2,BALINT-KURTI GABRIEL G.3,ZHANG HONG4,SMITH SEAN C.4,HANKEL MARLIES4

Affiliation:

1. State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

2. Research Institute for Information Technology, Kyushu University, 6-10-1 Hakozaki, Higashi-ku Fukuoka 812-8581, Japan

3. School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom

4. Centre for Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD 4072, Australia

Abstract

We present reaction probabilities, branching ratios and vibrational product quantum state distributions for the reaction O (1D)+ HCl → OH+Cl (OCl+H) , Boltzmann averaged over initial rotational quantum states at a temperature of 300 K and also for the deuterium isotopic variant. The quantum scattering dynamics are performed using the potential energy surfaces for all three contributing electronic states. Comparisons are presented with results computed using only the ground electronic state potential energy surface, with results computed using only the j = 0 initial rotational state and also with results obtained using an equal weighting for the lowest 10 rotational states. Inclusion of the higher initial rotational states significantly changes the form of the reaction probability as a function of collision energy, reducing the threshold for reaction on the 1A" and 2A' excited electronic states. We found that the combined inclusion of higher initial rotational states and all three contributing electronic states is crucial for obtaining a branching ratio that is within the range and trend given by experiment from our J = 0 calculations. Isotopic effects range from tunnelling effects for the hydrogen variant and enhancement of reactivity for the production of OD on the excited electronic states.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3