Affiliation:
1. Department of Physics and Information Engineering, Jining University, Qufu 273155, P. R. China
Abstract
Stereodynamics of the reaction Li + HF (v = 0,j = 0) → LiF + H and its isotopic variants on the ground electronic state (12A′) potential energy surface (PES) are studied by employing the quasiclassical trajectory (QCT) method. At a collision energy of 2.2 kcal/mol, product rotational angular momentum distributions, P(θr) and P(ϕr), are calculated in the center-of-mass (CM) frame. The results demonstrate that the product rotational angular momentum j′ is not only aligned along the direction perpendicular to the reagent relative velocity vector k, but also oriented along the negative y-axis. The four generalized polarization-dependent differential cross sections (PDDCSs) are also computed. The PDDCS00 distribution shows a sideways scattering for the reaction Li + HF and a strongly backward scattering for the reaction Li + DF . However, it displays both the forward and backward scatterings for the reaction Li + TF . These features demonstrate that the Li + HF and Li + DF reactions proceed predominantly through the direct reaction mechanism. However, the Li + TF reaction undergoes both the direct and indirect reaction mechanisms. The PDDCS21- distribution indicates that the product angular distributions are anisotropic.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications