A density functional theory study of the mechanisms of addition of transition metal oxides ReO3L(L = Cl-, O-, OCH3, CH3) to substituted ketenes

Author:

Ahmed Issahaku1,Tia Richard1,Adei Evans1

Affiliation:

1. Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana

Abstract

Ketenes are excellent precursors for catalytic asymmetric reactions, creating chiral centers mainly through addition across their C = C bonds. Density functional theory (DFT) calculations at the MO6/LACVP* and B3LYP/LACVP* levels of theory were employed in a systematic investigation of the peri-, chemo- and regio-selectivity of the addition of transition metal oxo complexes of the type ReO 3 L ( L = Cl -, O -, OCH 3, CH 3) to substituted ketenes O = C = C ( CH 3)(X) [ X = CH 3, H , CN , Ph ] with the aim of elucidating the effects of substituents on the mechanism of the reactions. The [2 + 2] addition pathway across the C = C or C = O (depending on the ligand) is the most preferred in the reactions of dimethyl ketene with all the metal complexes studied. The [2 + 2] pathway is also the most preferred in the reactions of ReO 3 Cl with all the substituted ketenes studied except when X = Cl . Thus of all the reactions studied, it is only the reaction of ReO 3 Cl with O = C = C ( CH 3)( Cl ) that prefers the [3 + 2] addition pathway. Reactions of dimethyl ketene with ReO 3 L favors addition across C = O bonds of the ketene when L = O - and CH 3 but favors addition across C = C bonds when L = OCH 3 and Cl . In the reactions of ReO 3 Cl with substituted ketenes, addition across C = O bonds is favored only when X = H while addition across C = C bonds is favored when X = CH 3, Cl , Ph , CN . The reactions of dimethyl ketene with ReO 3 L will most likely lead to the formation of an ester precursor in each case. A zwitterionic intermediate is formed in the reactions except in the reactions of [Formula: see text]. The order in the activation energies of the reactions of dimethyl ketenes with the metal complexes ReO 3 L with respect to changing ligand L is O - < CH 3 O - < Cl - < CH 3 while the order in reaction energies is CH 3 < CH 3 O - < O - < Cl -. For the reactions of substituted ketenes with ReO 3 Cl , the order in activation barriers is CH 3 < Ph < CN < Cl < H while the reaction energies follow the order Cl < CH 3 < H < Ph < CN . In the reactions of dimethyl ketenes with ReO 3 L , the trend in the selectivity of the reactions with respect to ligand L is Cl - < CH 3 O - < CH 3 < O - while the trend in selectivity is CH 3 < CN < Cl < Ph in the reactions of ReO 3 Cl with substituted ketenes. It is seen that reactions involving a change in oxidation state of metal from the reactant to product have high activation barriers while reactions that do not involve a change in oxidation state have low activation barriers. For both [3 + 2] and [2 + 2] additions, low activation barriers are obtained when the substituent on the ketene is electron-donating while high activation barriers are obtained when the substituent is electron-withdrawing.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3