Affiliation:
1. Department of Chemistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
Abstract
Ketenes are excellent precursors for catalytic asymmetric reactions, creating chiral centers mainly through addition across their C = C bonds. Density functional theory (DFT) calculations at the MO6/LACVP* and B3LYP/LACVP* levels of theory were employed in a systematic investigation of the peri-, chemo- and regio-selectivity of the addition of transition metal oxo complexes of the type ReO 3 L ( L = Cl -, O -, OCH 3, CH 3) to substituted ketenes O = C = C ( CH 3)(X) [ X = CH 3, H , CN , Ph ] with the aim of elucidating the effects of substituents on the mechanism of the reactions. The [2 + 2] addition pathway across the C = C or C = O (depending on the ligand) is the most preferred in the reactions of dimethyl ketene with all the metal complexes studied. The [2 + 2] pathway is also the most preferred in the reactions of ReO 3 Cl with all the substituted ketenes studied except when X = Cl . Thus of all the reactions studied, it is only the reaction of ReO 3 Cl with O = C = C ( CH 3)( Cl ) that prefers the [3 + 2] addition pathway. Reactions of dimethyl ketene with ReO 3 L favors addition across C = O bonds of the ketene when L = O - and CH 3 but favors addition across C = C bonds when L = OCH 3 and Cl . In the reactions of ReO 3 Cl with substituted ketenes, addition across C = O bonds is favored only when X = H while addition across C = C bonds is favored when X = CH 3, Cl , Ph , CN . The reactions of dimethyl ketene with ReO 3 L will most likely lead to the formation of an ester precursor in each case. A zwitterionic intermediate is formed in the reactions except in the reactions of [Formula: see text]. The order in the activation energies of the reactions of dimethyl ketenes with the metal complexes ReO 3 L with respect to changing ligand L is O - < CH 3 O - < Cl - < CH 3 while the order in reaction energies is CH 3 < CH 3 O - < O - < Cl -. For the reactions of substituted ketenes with ReO 3 Cl , the order in activation barriers is CH 3 < Ph < CN < Cl < H while the reaction energies follow the order Cl < CH 3 < H < Ph < CN . In the reactions of dimethyl ketenes with ReO 3 L , the trend in the selectivity of the reactions with respect to ligand L is Cl - < CH 3 O - < CH 3 < O - while the trend in selectivity is CH 3 < CN < Cl < Ph in the reactions of ReO 3 Cl with substituted ketenes. It is seen that reactions involving a change in oxidation state of metal from the reactant to product have high activation barriers while reactions that do not involve a change in oxidation state have low activation barriers. For both [3 + 2] and [2 + 2] additions, low activation barriers are obtained when the substituent on the ketene is electron-donating while high activation barriers are obtained when the substituent is electron-withdrawing.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A quantum chemical study of the mechanisms of olefin addition to group 9 transition metal dioxo compounds;SpringerPlus;2016-06-24
2. Exploring the peri-, chemo-, and regioselectivity of addition of technetium metal oxides of the type TcO3L (L = Cl–, O–, OCH3, CH3) to substituted ketenes: a DFT computational study;Canadian Journal of Chemistry;2016-05
3. A computational study of the addition of ReO3L (L = Cl−, CH3, OCH3 and Cp) to ethenone;SpringerPlus;2016-03-22
4. Exploring the peri-, chemo-, and regio-selectivity of addition of manganese metal oxides MnO3L (L = Cl−, O−, OCH3, CH3) to substituted ketenes: A computational study;Inorganica Chimica Acta;2016-02