A DFT INVESTIGATION OF SULFUR ADSORPTION ON Ir(100)

Author:

HUANG WUYING1,LAI WENZHEN1,XIE DAIQIAN1

Affiliation:

1. Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China

Abstract

The adsorptions of sulfur atom on the Ir (100) surface at p (2 × 2) and c (2 × 2) phases were investigated by the density functional calculations within the generalized gradient approximation. The adsorption energy, adsorption geometry, work function change, and charge density distribution were analyzed. The hollow site was found to be the most stable, followed by the bridge and the top sites. The calculated adsorption geometries were in good agreement with the observed results. Particularly, it was found that the adsorption of S on Ir (100) caused a work function decrease. A charge accumulation at the interface between the S layer and the Ir substrate, which centered closer to the S atom, suggests a polar covalent bonding. Density of states (DOS) analysis showed that the adsorption of S induces a reduction of the surface Ir d-orbital DOS around the Fermi level.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effective Work Functions of the Elements;Progress in Surface Science;2021-12

2. First-principles study of decomposition of NH3 on Ir(100);Surface Science;2008-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3