Modeling pKas of unfolded proteins to probe structural models of unfolded state

Author:

Tajielyato Nayere1,Alexov Emil1

Affiliation:

1. Department of Physics and Astronomy, Clemson University, Clemson, SC 29630, USA

Abstract

Modeling unfolded states of proteins has implications for protein folding and stability. Since in unfolded state proteins adopt multiple conformations, any experimentally measured quantity is ensemble averaged, therefore the computed quantity should be ensemble averaged as well. Here, we investigate the possibility that one can model an unfolded state ensemble with the coil model approach, algorithm such as “flexible-meccano” [Ozenne V et al., Flexible-meccano: A tool for the generation of explicit ensemle descriptions of intrinsically disordered proteins and their associated experimental observables, Bioinformatics 28:1463–1470, 2012], developed to generate structures for intrinsically disordered proteins. We probe such a possibility by using generated structures to calculate pKas of titratable groups and compare with experimental data. It is demonstrated that even with a small number of representative structures of unfolded state, the average calculated pKas are in very good agreement with experimentally measured pKas. Also, predictions are made for titratable groups for which there is no experimental data available. This suggests that the coil model approach is suitable for generating 3D structures of unfolded state of proteins. To make the approach suitable for large-scale modeling, which requires limited number of structures, we ranked the structures according to their solvent accessible surface area (SASA). It is shown that in the majority of cases, the top structures with smallest SASA are enough to represent unfolded state.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3