Affiliation:
1. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
2. Department of Chemistry, Anhui University, Hefei, Anhui 230601, P. R. China
Abstract
Alkali-metal hydrazinidoboranes have been recently investigated as a new stable high-capacity material for hydrogen storage, necessitating an exploration of the dehydrogenation mechanism for further developments in this field. Herein, we present a first systematic study of the structure and dehydrogenation mechanism of sodium hydrazinidoborane (NaHB) with three possible pathways considered: pathway A, corresponding to unimolecular dehydrogenation; pathway B, featuring dehydrogenation of the (NaHB)2 dimer via two different sub-pathways, and pathway C, corresponding to direct dehydrogenation (as compared to B). The calculated rate of the most probable dehydrogenation pathway (B, 3.28[Formula: see text]min[Formula: see text] is similar to that obtained experimentally (12.26[Formula: see text]min[Formula: see text], supporting the validity of our findings.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献