Affiliation:
1. Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Avda. Julián Clavería 8, E-33006 Oviedo (Asturias), Spain
2. Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Avda. Julián Clavería 8, E-33006 Oviedo (Asturias), Spain
Abstract
The experimental geometry obtained from single-crystal X-ray diffraction data for a metalladiphosphanyl carbene precursor is compared with the results of theoretical calculations made at the ab initio level by using Hartree–Fock (HF) and Density Functional Theory (DFT) methods over the carbene itself. Theoretical geometry optimizations for the singlet ground state of [ Mn(CO)4(PH2)2C: ]+ have been performed with several hybrid functionals and basis sets. Calculated geometries showed a perfect C 2v symmetry in the highest levels of calculation and were somewhat relaxed when compared with the experimental ones; for instance, with the largest basis set, the P–C–P angle found was 124.8°, whereas C–P bond distances were both 1.667 Å, compared to 103.5(3)° and 1.718(5) Å, respectively, from the experimental data. The absence of a ligand attached to the C : atom in the calculated structure, which is present in the form of iodine in the experimental complex, is probably responsible, to a certain extent, for the discrepancies. In addition to the structural computations, in order to theoretically quantify the highly electrophilic character expected for the carbene, electron affinities were calculated and found to be between 6.24 eV and 6.97 eV at different DFT levels of calculation, which confirmed the expectations. In this respect, a comparison with the analogous [Ru(CNH)4(PH2)2C:]2+ carbene is also made, showing the possibility of experimentally trapping the manganese carbene.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献