THEORETICAL CHARACTERIZATION OF A HIGHLY ELECTROPHILIC CARBENE

Author:

VAN DER MAELEN URÍA JUAN F.1,RUIZ JAVIER2,GARCÍA-GRANDA SANTIAGO1

Affiliation:

1. Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Avda. Julián Clavería 8, E-33006 Oviedo (Asturias), Spain

2. Departamento de Química Orgánica e Inorgánica, Facultad de Química, Universidad de Oviedo, Avda. Julián Clavería 8, E-33006 Oviedo (Asturias), Spain

Abstract

The experimental geometry obtained from single-crystal X-ray diffraction data for a metalladiphosphanyl carbene precursor is compared with the results of theoretical calculations made at the ab initio level by using Hartree–Fock (HF) and Density Functional Theory (DFT) methods over the carbene itself. Theoretical geometry optimizations for the singlet ground state of [ Mn(CO)4(PH2)2C: ]+ have been performed with several hybrid functionals and basis sets. Calculated geometries showed a perfect C 2v symmetry in the highest levels of calculation and were somewhat relaxed when compared with the experimental ones; for instance, with the largest basis set, the P–C–P angle found was 124.8°, whereas C–P bond distances were both 1.667 Å, compared to 103.5(3)° and 1.718(5) Å, respectively, from the experimental data. The absence of a ligand attached to the C : atom in the calculated structure, which is present in the form of iodine in the experimental complex, is probably responsible, to a certain extent, for the discrepancies. In addition to the structural computations, in order to theoretically quantify the highly electrophilic character expected for the carbene, electron affinities were calculated and found to be between 6.24 eV and 6.97 eV at different DFT levels of calculation, which confirmed the expectations. In this respect, a comparison with the analogous [Ru(CNH)4(PH2)2C:]2+ carbene is also made, showing the possibility of experimentally trapping the manganese carbene.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3