THEORETICAL STUDY ON THE H2 ACTIVATION BY PtO+ AND ${\rm PtO}_{2}^{+}$ IN THE GAS PHASE

Author:

TONG YONGCHUN1,WANG QINGYUN1,WU DONGQING1,WANG YONGCHENG2

Affiliation:

1. Department of Chemistry, Hexi University, Zhangye, Gansu 734000, P. R. China

2. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China

Abstract

Gas-phase H2 activation by PtO+ and [Formula: see text] were studied at the density functional level of theory (DFT) using the relativistic effective core potential (RECP) of Stuttgart basis sets on platinum atom and UB3LYP/6-311+G(2d,2p) level on hydrogen and oxygen atoms. Two reaction profiles corresponding to the doublet and quartet multiplicities were investigated in order to ascertain the presence of some spin inversion during the H2 reduction. The electron-transfer reactivity of the reactions were analyzed using the two-state model, and the strongly crossing behavior on the transition state (TS) area were shown. Finally, the actions of frontier molecular orbitals in minimum-energy crossing point (MECP) have been illuminated briefly. These theoretical results can act as a guide to further theoretical and experimental research. H2 activation mediated by metal oxide cations were found to be an exothermic spin-forbidden process resulting from a crossing between quartet and doublet profiles. To evaluate the spin-forbidden process in the reaction pathway, the spin-obit coupling (SOC) matrix elements are calculated at the MECP with the different potential energy surfaces (PESs) and the probability of crossing between the adiabatic potential-energy surfaces during a single pass through the avoided crossing region was described. Therefore, the intersystem crossing (ISC) at crossing points (CP) occur efficiently because of the large SOC (ca. 85.58 cm-1) involved.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3