Relation between the NMR data and the pseudorotational free-energy profile for oxolane

Author:

Plazinski Wojciech1ORCID,Gaweda Karolina1,Plazinska Anita2

Affiliation:

1. Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Kraków, Poland

2. Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lublin, ul. W. Chodzki 4A, PL-20093 Lublin, Poland

Abstract

The conformation of five-membered furanose rings is a crucial issue for the structural analysis of many biologically-relevant molecules, including DNA and RNA. Oxolane can be treated as a prototypical furanose, composed only of saturated unsubstituted ring. In spite of its structural simplicity, providing the accurate quantitative description of the oxolane conformational features remains a great challenge for both the experimental and theoretical techniques. Here we show the method of recovering the free-energy profiles describing the conformational equilibrium in the oxolane ring (i.e. pseudorotation) based on the experimentally-inferred NMR data ([Formula: see text] coupling constants). The results remain in agreement with the quantum-mechanical-based molecular dynamics simulations and emphasize the large contributions of all ring conformers, even those located at the free-energy barriers. This includes the significant populations of limiting 3T2/2T3 and OE/EO shapes. Our findings provide another example of a poor applicability of the two-state model, which is routinely applied to analyze the NMR data in terms of population of different ring conformers.

Funder

Narodowe Centrum Nauki

Publisher

World Scientific Pub Co Pte Lt

Subject

Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3