Affiliation:
1. Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Materials Science, Shaanxi Normal University, Xian 710062, P. R. China
Abstract
We present a direct ab initio dynamics study of thermal rate constants of the hydrogen abstraction reaction of H 2 Se + H → SeH + H 2. The QCISD and CCSD(T) methods were employed to optimize the geometries of stationary points and to calculate the harmonic vibrational frequencies. The split-valence 6-311 + G(d,p) and correlation-consistent cc-pVTZ basis sets big enough to describe the geometries and vibrational frequencies of the species involving in the title reaction. The energies obtained at the QCISD(T)/6-311 ++ G(3df,3pd)//QCISD/6-311 + G(d,p) level of theory is able to compare to those calculated at the CCSD(T)/6-311 ++ G(3df,3pd)//CCSD(T)/6-311 + G(d,p) level of theory. The energies of all the selected points along the minimum energy path (MEP) were refined at the QCISD(T)/6-311 ++ G(3df,3pd) level of theory. The barriers were obtained at the both QCISD(T)/6-311 ++ G(3df,3pd)//QCISD/6-311 + G(d,p) and CCSD(T)/6-311 ++ G(3df,3pd)//CCSD(T)/6-311 + G(d,p) levels of theory are in good agreement with experimental one. The forward rate constants were evaluated with both canonical variational transition state theory with small curvature tunneling correction (CVT/SCT) and improved canonical variational transition state theory with small curvature tunneling correction (ICVT/SCT) in the temperature range of 200–2500 K. The calculated forward rate constants of the reaction at the QCISD(T)/6-311 ++ G(3df,3pd)//QCISD/6-311 + G(d,p) level of theory are in good agreement with available experimental data.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications