Affiliation:
1. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
2. University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Abstract
We theoretically study the second-order nonlinear optical properties of six fluorescent proteins (FPs), such as green fluorescent protein (GFP), BFP, enhanced BFP (eBFP), CFP, YFP, and DsRed. To begin with, the geometries of all these FP chromophores are optimized at B3LYP/6-311++G** level in a water medium and the polarized continuum model (PCM in water) method is adopted. Using a time-dependent density functional theory (TDDFT) method, the electronic structures and excited-state properties of chromophores are determined. Here we employ TDDFT combining with the sum-over-states (SOS) method to calculate the first-order hyperpolarizability for second-harmonic generation (SHG) optical process. Moreover, we discuss the origin of the nonlinear optical response and determine what caused the variation of first-order hyperpolarizability. Our calculations show that the charge transfers of π → π* in the central conjugated structure and p → π* charge transfers from the side chain R1 to conjugated structure of chromophores markedly affect the first-order hyperpolarizability.
Publisher
World Scientific Pub Co Pte Lt
Subject
Computational Theory and Mathematics,Physical and Theoretical Chemistry,Computer Science Applications