An Effective Model for Forecasting Travel Consumer Demand Using Big Data Analysis

Author:

Yu Huixia1

Affiliation:

1. School of Management, Henan Institute of Urban Construction, Pingdingshan, Henan 467000, P. R. China

Abstract

As a result of gathering information from multiple consumer centers, big data (BD) assists in analyzing traveler patterns and developing a unique marketing plan tailored to the target demographic. BD tourism forecasting is a relatively new academic field because of the challenges in capturing, gathering, and modeling this sort of data due to its inherent privacy and economic importance. The growth rate of cruise tourists has slowed down after years of rapid expansion. Investing in homeports, cruise ships, and promotional activities carries a growing danger of financial loss. To make investment decisions and prepare for the future, it is necessary to predict tourism demand. We present the least-squares vector regression (LSVR) model with the gravitational search method for forecasting demand for cruise tourism (FCT) based on BD to improve forecasting performance. As a part of the proposed model forecasting demand for cruise tourism based on big data (FDCT-BD), hyper-parameters of the LSVR model are improved using an algorithm and by comparing these models with various configuration combinations. This paper forecasts tourist arrivals based on internet BD from a search engine and online review platforms and the comparative advantage of multi-platform forecasting over single-platform forecasting based on online review data. However, the results show that the methodology’s recommended framework is successful and that BD may estimate cruise tourist demand with enhanced performance and accuracy 93.8% and 97.9%, respectively.

Funder

Higher Education Research Project of the Henan University of Urban Construction in 2019

Study on Vocational Quality Cultivation of Tourism Management Major Students in Applied Undergraduate Universities

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3