Great Lakes Water Levels: Decomposing Time Series for Attribution

Author:

Pietrafesa Leonard J.1,Bao Shaowu1,Huang Norden E.2,Gayes Paul T.1,Yan Tingzhuang1,Slattery Michael P.1

Affiliation:

1. Coastal Carolina University, School of Coastal and Marine Systems Science, Conway, South Carolina 29528, USA

2. National Central University, Research Center for Adaptive Data Analysis, Zhongli, Taiwan 32001, ROC

Abstract

Great Lakes water levels have been trending downwards throughout the 20th and into the 21st centuries. Potential causes are numerous. There have been dredging and water diversion projects over the last 110 years, increasing demand for fresh water consumption from a rising population, and considerable variations in environmental factors (rainfall, snowfall, air temperature, and wind), all causal in nature. A thorough assessment of the National Ocean and Atmospheric Administration (NOAA) National Center for Environmental Information (NCEI) and the NOAA National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) — Reanalysis Project (RP) archives of time series of winds, air temperatures, rainfall and snowfall, and water level data, reveals that falling lake levels can be linked to rising air temperatures. Nonuniform, post-glacial, isostatic adjustments of the entire Great Lakes region has further complicated the system as land mass tilting causes localized uplift or subsidence that has also altered relative water levels. A mathematical decomposition of the various data sets and accessory calculations strongly indicate regional atmospheric temperature increases over the entire 20th century and the early 21st century resulting in increased evaporation, appears to be the dominant driving factor in the continued downward trend of water levels in the Great Lakes. Moreover, a high degree of correlation was discovered in comparing water level in the Great Lakes with the comparable temporal variability and record length trends evident both the Global (Land and Ocean) Surface Temperature Anomaly (GSTA) time series and the Atlantic Multidecadal Oscillation (the AMO). It is of note that there have been several water level events since 2013 from which the long term losses of fresh water have undergone a change and the lakes have gained fresh water. This presents an apparent quandary to our nearly 120 year, record length study which revealed downward trends in water levels. To wit, this recent upward movement begs the question: Is the two-year change a precursor to increases in water levels or is it just a local blip? We will focus on data up to 2013, but comment upon recently reported increases as part of our analyses.

Funder

Coastal Carolina University (US)

Publisher

World Scientific Pub Co Pte Lt

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3