Features Reweighting and Selection in ligand-based Virtual Screening for Molecular Similarity Searching Based on Deep Belief Networks

Author:

Nasser Maged1,Salim Naomie1,Hamza Hentabli1,Saeed Faisal2ORCID,Rabiu Idris1

Affiliation:

1. School of Computing, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

2. College of Computer Science and Engineering, Taibah University, Medina, Saudi Arabia

Abstract

Virtual screening (VS) is defined as the use of a compilation of computational procedures to grade, score and/or sort several chemical formations. The purpose of VS is to identify the molecules holding the greatest prior probabilities of activity. Many of the conventional similarity methods assume that molecular features that do not relate to the biological activity carry the same weight as the important ones. For this reason, the researchers on this paper investigated that some features are being more important than others through the chemist structure diagrams and the weight for each fragment should be taken into consideration by giving more weight to those fragments that are more important. In this paper, a deep learning method specifically known as Deep Belief Networks (DBN) has been used to reweight the molecule features and based on this new weigh, the reconstruction feature error has been calculated for all the features. Based on the reconstruction feature error values, Principal Component Analysis (PCA) has been used for the dimension’s reduction and only few hundreds of features have been selected based on the less error rate. The main aim of this research is to show an improvement of the similarity searching performance based on the selected features those have less error rate. The results derived through the DBN were compared with those derived through other similarity methods, such as the Tanimoto coefficient and the quantum-based methods. This comparison revealed the performance of the DBN with the structurally heterogeneous data sets (DS1 and DS3) to be superior to the performances of all the other techniques.

Funder

the Research Management Centre (RMC) at the Universiti Teknologi Malaysia

Publisher

World Scientific Pub Co Pte Lt

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3