The Odd Log-Logistic Geometric Normal Regression Model with Applications

Author:

Prataviera Fábio1,Cordeiro Gauss M.2,Ortega Edwin M. M.1,Suzuki Adriano K.3

Affiliation:

1. Departamento de Ciências Exatas, Universidade de São Paulo, Avenida Pádua Dias 11, CEP 13418-900, Piracicaba, SP, Brazil

2. Departamento de Estatística, Universıdade Federal de Pernambuco, Cidade Universitária, CEP 50740-540, Recıfe, PE, Brazil

3. Departamento de Matemática Aplicada e Estatística, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão 1010, CEP 05508-090, São Paulo, SP, Brazil

Abstract

In several applications, the distribution of the data is frequently unimodal, asymmetric or bimodal. The regression models commonly used for applications to data with real support are the normal, skew normal, beta normal and gamma normal, among others. We define a new regression model based on the odd log-logistic geometric normal distribution for modeling asymmetric or bimodal data with support in [Formula: see text], which generalizes some known regression models including the widely known heteroscedastic linear regression. We adopt the maximum likelihood method for estimating the model parameters and define diagnostic measures to detect influential observations. For some parameter settings, sample sizes and different systematic structures, various simulations are performed to verify the adequacy of the estimators of the model parameters. The empirical distribution of the quantile residuals is investigated and compared with the standard normal distribution. We prove empirically the usefulness of the proposed models by means of three applications to real data.

Publisher

World Scientific Pub Co Pte Lt

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3