A Deep Learning Artificial Neural Network Algorithm for Instance-based Arabic Language Authorship Attribution

Author:

Al-Sarem Mohammad1,Alsaeedi Abdullah1,Saeed Faisal12ORCID

Affiliation:

1. College of Computer Science and Engineering, Taibah University Medina, Saudi Arabia

2. School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK

Abstract

One of the common examples of cybercrime are identity theft and violating of intellectual property that commonly occur in social media. Authorship attribution (AA) techniques are used to extract and use several features of the text in order to identify the original author. These features are used to differentiate the writing style of one author from others. Several machine learning methods have been used to identify the AA using different languages. Few studies were conducted for Arabic AA. This paper aims to investigate the performance of deep learning-based artificial neural network (ANN) for identifying the attribution of authors using Arabic text. The applied model helps protect users in social media from identity theft and violating of their intellectual property. The experiments of this study used a dataset that includes 4,686 Arabic texts for 15 different authors. The performance of the deep learning method was compared with several machine learning methods. The experimental results showed the superior performance of deep learning for AA in Arabic language using different evaluation criteria such as F-score, accuracy, precision, and recall measures.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3