Fisher Information and Uncertainty Principle for Skew-Gaussian Random Variables

Author:

Contreras-Reyes Javier E.1ORCID

Affiliation:

1. Instituto de Estadística, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile

Abstract

Fisher information is a measure to quantify information and estimate system-defining parameters. The scaling and uncertainty properties of this measure, linked with Shannon entropy, are useful to characterize signals through the Fisher–Shannon plane. In addition, several non-gaussian distributions have been exemplified, given that assuming gaussianity in evolving systems is unrealistic, and the derivation of distributions that addressed asymmetry and heavy–tails is more suitable. The latter has motivated studying Fisher information and the uncertainty principle for skew-gaussian random variables for this paper. We describe the skew-gaussian distribution effect on uncertainty principle, from which the Fisher information, the Shannon entropy power, and the Fisher divergence are derived. Results indicate that flexibility of skew-gaussian distribution with a shape parameter allows deriving explicit expressions of these measures and define a new Fisher–Shannon information plane. Performance of the proposed methodology is illustrated by numerical results and applications to condition factor time series.

Funder

FONDECYT

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3