Research and Application of Two-Dimensional Time-Delayed Tri-Stable Stochastic Resonance System for Bearing Fault Detection

Author:

He Lifang1ORCID,Xu Jiaqi1ORCID,Huang Xiaoxiao1ORCID

Affiliation:

1. School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications (CQUPT), Chongqing 400065, P. R. China

Abstract

The time-delayed feedback term can improve the output of a system, while the two-dimensional stochastic resonance (SR) system has a stronger signal amplification capability. To improve the output signal-to-noise ratio (SNR) of the system, this paper proposes a two-dimensional time-delayed tri-stable stochastic resonance system (TDTDTSR) based on the advantages of the above two systems. First, the steady-state probability density function (SPD), the mean first-pass time (MFPT), and the output SNR are derived under adiabatic approximation theory, and the effects of different system parameters on them are investigated. Next, TDTDTSR and the classical two-dimensional tri-stable stochastic resonance system (CTDTSR) system are simulated numerically. The results show that the mean signal-to-noise gain (MSNRG) of TDTDTSR system is higher than that of the CTDTSR system. Finally, the system parameters are optimized using a genetic algorithm, and the application of TDTDTSR to bearing fault detection is compared with CTDTSR and the novel piecewise symmetric two-dimensional tri-stable stochastic resonance (NPSTDTSR) systems. The experimental results demonstrate that TDTDTSR system has better performance, providing valuable theoretical support and practical engineering applications for the system in subsequent analyses.

Funder

Chongqing Natural Science Foundation General

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3