Stochastic Kinetics for a FitzHugh–Nagumo Neural System with Time Delay Driven by Non-Gaussian Noise and a Multiplicative Periodic Signal

Author:

Wang Kang-Kang12,Zong De-Cai3,Ye Hui1,Wang Ya-Jun1

Affiliation:

1. School of Science, Jiangsu University of Science and Technology, Zhenjiang 212003, P. R. China

2. Center of Complex Systems and Network Science Research, Southeast University, Nanjing 210096, P. R. China

3. College of Computer Science and Engineering, Changshu Institute of Technology, Changshu 215500, P. R. China

Abstract

In the present paper, the stability and the phenomena of stochastic resonance (SR) for a FitzHugh–Nagumo (FHN) system with time delay driven by a multiplicative non-Gaussian noise and an additive Gaussian white noise are investigated. By using the fast descent method, unified colored noise approximation and the two-state theory for the SR, the expressions for the stationary probability density function (SPDF) and the signal-to-noise ratio (SNR) are obtained. The research results show that the two noise intensities and time delay can always decrease the probability density at the two stable states and impair the stability of the neural system; while the noise correlation time [Formula: see text] can increase the probability density around both stable states and consolidate the stability of the neural system. Furthermore, the other noise correlation time [Formula: see text] can increase the probability at the resting state, but reduce that around the excited state. With respect to the SNR, it is discovered that the two noise strengths can both weaken the SR effect, while time delay [Formula: see text] and the departure parameter [Formula: see text] will always amplify the SR phenomenon. Moreover, the noise correlation time [Formula: see text] can motivate the SR effect, but not alter the peak value of the SNR. What’s most interesting is that the other noise correlation time [Formula: see text] can not only stimulate the SR phenomenon, but also results in the occurrence of two resonant peaks, whose heights are simultaneously improved because of the action of [Formula: see text].

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3