Correlation Structure of the Solution to the Reaction-Diffusion Equation in Respond to Random Fluctuations of the Boundary Conditions

Author:

Sabelfeld Karl1

Affiliation:

1. Institute of Computational Mathematics and Mathematical Geophysics, Russian Academy of Sciences, Lavrentiev str. 6, Novosibirsk, Russia

Abstract

In this paper, we deal with the reaction-diffusion equation subject to Dirichlet and Neumann boundary conditions where the input function on the boundary is randomly fluctuated. First we study the fundamental case when this function is a white noise. Explicit form of the correlation function is derived for the reaction-diffusion equation in a half-plane. In this case we obtain the Karhunen–Loève expansion (KL) of the solution which is a partially homogeneous random field, i.e., it is homogeneous along the horizontal direction, and is inhomogeneous in the vertical direction. Then, based on this representation, we extend this result to the general case when the function prescribed on the boundary is an arbitrary homogeneous random field.

Funder

Russian Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Physics and Astronomy,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3