Performance of Multi-User Transmitter Pre-Processing Assisted Multi-Cell IDMA System for Downlink Transmission

Author:

Partibane B.1,Nagarajan V.2,Vishvaksenan K. S.1,Kalidoss R.1

Affiliation:

1. Department of ECE, SSN College of Engineering, Kalavakkam, Chennai, India

2. Department of ECE, Adhiparasakthi Engineering College, Melmaruvathur, India

Abstract

In this paper, we present the performance of multi-user transmitter pre-processing (MUTP) assisted coded-interleave division multiple access (IDMA) system over correlated frequency-selective channels for downlink communication. We realize MUTP using singular value decomposition (SVD) technique, which exploits the channel state information (CSI) of all the active users that is acquired via feedback channels. We consider the MUTP technique to alleviate the effects of co-channel interference (CCI) and multiple access interference (MAI). To be specific, we estimate the CSI using least square error (LSE) algorithm at each of the mobile stations (MSs) and perform vector quantization using Lloyd's algorithm, and feedback the bits that represents the quantized magnitudes and phases to the base station (BS) through the dedicated low rate noisy channel. Finally we recover the quantized bits at the BS to formulate the pre-processing matrix. The performance of MUTP aided IDMA systems are evaluated for five types of delay spread distributions pertaining to long-term evolution (LTE) and Stanford University Interim (SUI) channel models. We also compare the performance of MUTP with minimum mean square error (MMSE) detector for the coded IDMA system. The considered TP scheme alleviates the effects of CCI with less complex signal detection at the MSs when compared to MMSE detector. Further, our simulation results reveal that SVD-based MUTP assisted coded IDMA system outperforms the MMSE detector in terms of achievable bit error rate (BER) with low signal-to-noise ratio (SNR) requirement by mitigating the effects of CCI and MAI.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3