Affiliation:
1. Laboratory of Physical and Structural Biology, NICHD, National Institutes of Health, Bethesda, MD 20892-0924, USA
Abstract
Understanding the role of noise at cellular and higher hierarchical levels depends on our knowledge of the physical mechanisms of its generation. Conversely, noise is a rich source of information about these mechanisms. Using channel-forming protein molecules reconstituted into artificial 5-nm-thick insulating lipid films, it is possible to investigate noise in single-molecule experiments and to relate its origins to protein function. Recent progress in this field is reviewed with an emphasis on how this experimental technique can be used to study low-frequency protein dynamics, including not only reversible ionization of sites on the channel-forming protein molecule, but also molecular mechanisms of 1/f-noise generation. Several new applications of the single-molecule noise analysis to membrane transport problem are also addressed. Among those is a study on antibiotic translocation across bacterial walls. High-resolution recording of ionic current through the single channel, formed by the general bacterial porin, OmpF, enables us to resolve single-molecule events of antibiotic translocation.
Publisher
World Scientific Pub Co Pte Lt
Subject
General Physics and Astronomy,General Mathematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献