LOW FREQUENCY NOISE IN SUB-0.1μmSiGepMOSFETs, CHARACTERISATION AND MODELING

Author:

ROMANJEK KRUNOSLAV1,GHIBAUDO GÉRARD1,ERNST THOMAS2,CHROBOCZEK JAN A.2

Affiliation:

1. IMEP, UMR CNRS, ENSERG, BP 257, 38016 Grenoble, France

2. CEA-LETI, 17 Rue des Martyrs, 38054, Grenoble, France

Abstract

Drain current-gate voltage, I d ( V g ) characteristics and the power spectral density, PSD , of I d fluctuations were obtained on SiGe channel pMOSFETs and on their Si homologues, for I d intensities varied from deep sub-threshold to strong inversion values. Devices with 2.2nm thick SiO 2 gates and channel lengths 50 nm <L<10μm were used. In heterostructures, the SiGe layers were 20nm thick and buried under 2nm of Si . The data were simulated, assuming a parallel current flow in the interface and the SiGe channels, with associated noise sources. The transport parameters, extracted from I d ( V g ) characteristics, served for calculating the PSD ( I d ) functions. The latter required adjusting the interface trap density and a parameter α c , accounting for the effect of the interface charge fluctua-tions on the hole mobility fluctuations, significant at high levels of trap filling i.e. high I d . We found that the PSD in the SiGe devices was up to 10 times lower than in the Si controls at sufficiently high I d . The simulation, accounting for the data, required a significant lowering of α c for the SiGe channel. That implies that the LFN reduction in SiGe MOSFETs results from a weaker interaction of the SiGe holes with the interface charges. The sub-0.1μm channel devices show a similar noise lowering, in spite of the hole mobility degradation.

Publisher

World Scientific Pub Co Pte Lt

Subject

General Physics and Astronomy,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3