The Puzzling of Stefan–Boltzmann Law: Classical or Quantum Physics

Author:

Reggiani Lino1ORCID,Alfinito Eleonora1ORCID

Affiliation:

1. Dipartimento di Matematica e Fisica, “Ennio de Giorgi”, Università del Salento, via Monteroni 73100 Lecce, Italy

Abstract

Stefan–Boltzmann law, stating the fourth power temperature dependence of the radiation emission by a black-body, was empirically formulated by Stefan in 1874 by fitting existing experiments and theoretically validated by Boltzmann in 1884 on the basis of a classical physical model involving thermodynamics principles and the radiation pressure predicted by Maxwell equations. At first sight the electromagnetic (EM) gas assumed by Boltzmann and following Rayleigh (1900) identifiable as an ensemble of N classical normal-modes, looks like an extension of the classical model of the massive ideal-gas. Accordingly, for this EM gas the internal total energy, U, was assumed to be function of volume V and temperature T as [Formula: see text], and the equation of state was given by [Formula: see text], with P the radiation pressure. In addition, Boltzmann implicitly assumed that, for given values of V and T, U and the number of modes N would take finite values. However, from one hand these assumptions are not justified by Maxwell equations and classical statistics since, in vacuum (i.e., far from the EM sources), the values of N and U diverge, the so-called ultraviolet catastrophe introduced by Ehrenfest in 1911. From another hand, Boltzmann derivation of Stefan law is found to be macroscopically compatible with its derivation from quantum statistics announced by Planck in 1901. In this paper, we present a justification of this puzzling classical/quantum compatibility by noticing that the implicit assumptions made by Boltzmann is fully justified by Planck quantum statistics. Furthermore, we shed new light on the interpretation of recent classical simulations of a black body carried out by Wang, Casati, and Benenti in 2022 who found an analogous puzzling consistency between Stefan–Boltzmann law and their simulations to induce speculations on classical physics and black body radiation that are claimed to require a critical reconsideration of the role of classical physics for the understanding of quantum mechanics.

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3