A Novel Model for Mining Frequent Patterns Based on Embedded Granular Computing

Author:

Fang Gang1,Wang Jiale1,Ying Hong1

Affiliation:

1. Chongqing Three Gorges University, Wanzhou, Chongqing, 404020, P. R. China

Abstract

For mining frequent patterns, it is very expensive for the Apriori mining model to read the database repeatedly, and a highly condensed data structure made the FP-growth mining model cost larger memory. In order to avoid the disadvantages of these data mining model, this paper proposes a novel data mining model for discovering frequent patterns, called a data mining model based on embedded granular computing, which is different from the Apriori model and the FP-growth model. The data mining model adopts efficiently dividing and conquering from granular computing, which can construct adaptively different hierarchical granules. To form the data mining model, an embedded granular computing model is proposed in this paper. The granular computing model is used in discovering frequent patterns, on the one hand, it avoids reading the database repeatedly via constructing the extended information granule, and lessen the calculated amount of support; on the other hand, it reduces the memory requirements by the attribute granule, where the search space can compress the memory space of data structure that make the method of generating the candidate become simple relatively; and it can divide the overlarge computing task into several easy operations via the attribute granule, namely, the embedded granular computing model could short the size of the search space from a super state to several sub-states. All experimental results show that the data mining model based on embedded granular computing is more reasonable and efficient than these classical models for mining frequent patterns under these different types of datasets. Otherwise, an extra discussion describes the performance trend of the model by a group of experiments.

Funder

National Natural Science Foundation of China

Chongqing Cutting-edge and Applied Foundation Research Program

Scientific and Technological Research Program of Chongqing Municipal Education Commission

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3