Uncertain Distribution-Minimum Spanning Tree Problem

Author:

Zhou Jian1,Yi Xiajie1,Wang Ke1,Liu Jing1

Affiliation:

1. School of Management, Shanghai University, Shanghai 200444, China

Abstract

This paper studies the minimum spanning tree problem on a graph with uncertain edge weights, which are formulated as uncertain variables. The concept of ideal uncertain minimum spanning tree (ideal UMST) is initiated by extending the definition of the uncertain [Formula: see text]-minimum spanning tree to reect the overall properties of the α-minimum spanning tree weights at any confidence level [Formula: see text]. On the basis of this new concept, the definition of uncertain distribution-minimum spanning tree is proposed in three ways. Particularly, by considering the tail value at risk from the perspective of risk management, the notion of uncertain [Formula: see text]-distribution-minimum spanning tree ([Formula: see text]-distribution-UMST) is suggested. It is shown that the [Formula: see text]-distribution-UMST is just the uncertain expected minimum spanning tree when [Formula: see text] = 0. For any [Formula: see text], this problem can be effectively solved via the proposed deterministic graph transformation-based approach with the aid of the [Formula: see text]-distribution-path optimality condition. Furthermore, the proposed definitions and solutions are illustrated by some numerical examples.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3