BOUNDED-PARAMETER PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES: FRAMEWORK AND ALGORITHM

Author:

NI YAODONG1,LIU ZHI-QIANG2

Affiliation:

1. School of Information Technology and Management, University of International Business and Economics, Beijing, 100029, China

2. School of Creative Media, City University of Hong Kong, Hong Kong, China

Abstract

Partially observable Markov decision processes (POMDPs) are powerful for planning under uncertainty. However, it is usually impractical to employ a POMDP with exact parameters to model the real-life situation precisely, due to various reasons such as limited data for learning the model, inability of exact POMDPs to model dynamic situations, etc. In this paper, assuming that the parameters of POMDPs are imprecise but bounded, we formulate the framework of bounded-parameter partially observable Markov decision processes (BPOMDPs). A modified value iteration is proposed as a basic strategy for tackling parameter imprecision in BPOMDPs. In addition, we design the UL-based value iteration algorithm, in which each value backup is based on two sets of vectors called U-set and L-set. We propose four strategies for computing U-set and L-set. We analyze theoretically the computational complexity and the reward loss of the algorithm. The effectiveness and robustness of the algorithm are shown empirically.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Information Systems,Control and Systems Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A survey of decision making and optimization under uncertainty;Annals of Operations Research;2019-10-25

2. A Binomial Tree Approach to Pricing Vulnerable Option in a Vague World;International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems;2018-01-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3